skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Palubicki, Wojtek"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. We propose a novel approach for the computational modeling of lignified tissues, such as those found in tree branches and timber. We leverage a stateof the-art strand-based representation for tree form, which we extend to describe biophysical processes at short and long time scales. Simulations at short time scales enable us to model different breaking patterns due to branch bending, twisting, and breaking. On long timescales, our method enables the simulation of realistic branch shapes under the influence of plausible biophysical processes, such as the development of compression and tension wood. We specifically focus on computationally fast simulations of woody material, enabling the interactive exploration of branches and wood breaking. By leveraging Cosserat rod physics, our method enables the generation of a wide variety of breaking patterns. We showcase the capabilities of our method by performing and visualizing numerous experiments. 
    more » « less
    Free, publicly-accessible full text available July 26, 2026